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Generalised charged static dust in relativity 

A Banerjee?, N 0 SantosS and M M SomS 
t Jadavpur University, Calcutta 700032, India 
$ Instituto de Fisica-Ilha do FundHo, Universidade Federal do Rio de Janeiro, Rio d e  
Janeiro, Brazil 

Received 16 June 1982 

Abstract. For a static dust distribution charged in both the electric and scalar sense we 
prove that the sum of squares of these two types of charge densities must be either greater 
than or equal to the square of the mass density, when the scalar potential is a function 
of the electrostatic potential. In the absence of either the electrical or scalar field the 
equality sign holds. In general, if there is no singularity in the matter distribution the 
three-space is conformally Euclidean. 

We show how to generate a special class of exact solutions of empty space in the 
presence of electrostatic and zero mass scalar fields and some properties are discussed. 

Finally we present two exact spherically symmetric solutions as examples. 

1. Introduction 

There are some general results in the literature for electrically charged dust in 
equilibrium (De and Raychaudhuri 1968, Das 1962) as well as for electrovac (Weyl 
1917, Majumdar 1947, Papapetrou 1947). In the work of De and Raychaudhuri it 
was shown that the equality of mass and charge densities follows from the field 
equations provided there is no singularity in the distribution. Later the result was 
proved in a similar way also for static dust charged in the scalar sense (Wolk e? a1 
1975). Das, however, found that for dust in equilibrium charged in either the electric 
or scalar sense, all the field equations reduce to a single nonlinear equation. 

In the present paper we have generalised all these results for a static distribution 
of incoherent dust, charged both in the electric and in the scalar sense, with the 
assumption of a functional relation between the scalar potential and the electrostatic 
potential. Such a functional relation implies that the two types of charge are closely 
related. Our results include, in fact, generalisations of even those obtained by Teixeira 
et af (1976) in the spherically symmetric case. We have further extended our calcula- 
tions in the empty space containing source-free electromagnetic as well as massless 
scalar fields. 

In 0 2 we have proved that for a static dust distribution charged both in the electrical 
and scalar sense the sum of the squares of these two types of charge densities must 
be either greater than or equal to the square of the mass density. In the absence of 
either the electrical or scalar field, however, only the equality sign holds. For charged 
matter there is a unique charge-to-mass ratio such that the electrical repulsion just 
balances the gravitational attraction, and the system can be static. If two types of 
matter are present with two types of charges, the repulsions act only between equal 
types, whereas gravitational attraction acts between all matter. 
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It is therefore not surprising that the static condition yields an inequality between 
the charges and mass, and this paper develops the detailed mathematics of this 
situation. It has been further shown that in general if there is no singularity in the 
matter distribution the three-space ( t  = constant) is conformally Euclidean and the 
whole set of field equations reduces to a single nonlinear differential equation. 

In § 3 we have shown how to generate a special class of exact solutions for empty 
space in the presence of electrostatic and zero mass scalar fields. 

It has been further shown that for a special choice of some constant parameter 
we get immediately the case discussed by Tiwari (1979), where the functional relation 
between goo and the electrostatic potential 4 is in the whole square form. 

In 5 4 we have given two exact interior solutions. One of them is for a spherically 
symmetric static dust charged in the electrical as well as in the scalar sense. The ratios 
of charge-to-mass densities are assumed to be constants. The solutions are found to 
be singular at the origin of the isotropic coordinate system. The second solution is 
for spherically symmetric, conformally flat, static dust charged only in the scalar sense. 
They are non-singular and are matched with the outside Yilmaz (1958) solution. 

2. Dust distribution with electric and scalar charge in static equilibrium 

Coupled Einstein-Maxwell-scalar field equations for incoherent matter containing 
both electric and scalar charge are 

R = - 8 ~ (  T" ,  - iSF,,T) (2.1) 

where TFL,  is the total energy-momentum tensor due to the dust, the electromagnetic 
and the scalar field. One can write T",  as 

(2.2) 

In (2.2) p represents the dust density, FFY the electromagnetic (2.2) field tensor and 
S the massless scalar field. Here and in what follows Greek indices stand for space-time 
components, Latin indices for spatial components alone. Semicolons and commas 
denote covariant and partial differentiations, respectively. Units are chosen so that 
c = G = l .  

4 r T W ,  = ~ T P V ~ V ,  + (-FF"F,, +$S"J' , f l" ' )  -S'"S,,  +iSF$"S,, .  

We consider the line element in the form 

ds2 = e2" dt2 - e-2"h,k dx' dx '. 

(JG e-2"g'k4,k),, = 4~ J q  e - " ~ ,  

(4; glkS,k),z = 4~ J - g  LY, 

(2.3) 

Maxwell's equations and the scalar field equations are written as 

(2.4) 

( 2 . 5 )  

where U and LY represent electric and scalar charge density respectively. We are here 
considering only the repulsive-type scalar field as was previously discussed by Das 
(1962). The static condition gives U' = 0 and u o  = Since the field is purely 
static we have = 0 and Fol = 4,,, where 4 is the electrostatic potential. Taking the 
divergence of (2.1) and utilising (2.2), (2.3), (2.4) and (2.5), one obtains 

v.1 = - b / P ) e - " 4 , 1 -  (ff/P)S,,. (2.6) 
Here if we make an assumption that S is a function of the electric potential 4, we 

- 
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immediately get a relation of the type 

77.i =f(xi)4, i .  
Equation (2.7) shows that 4 is functionally related to 7. 

We now consider the field equation 

3753 

(2.7) 

Roo = - 8 ~ (  Too - ST) (2.8) 

(2.9) 

which gives 
( J G g t k q , k ) , i  +4rrJ<p - J q e -  2q g ik C$,i4& = O .  

Utilising (2.4), (2.5) and (2.6) in (2.9) one can obtain after a little manipulation the 
relation 

[J-g g ’ k q , k  (e  -2q@2 + St2 - 1)1’2],i = 0.  (2.10) 

Here the prime represents differentiation with respect to q. The relation (2.10) 
resembles equation (16) of De  and Raychaudhuri (1968) and is equivalent to their 
relation when S’ = 0, that is, in the absence of the scalar field. We follow now the 
arguments put forward by De and Raychaudhuri to write finally 

e-2q4r2+S‘2 -1  =o ,  (2.11) 

provided the surface of the charged dust cloud under consideration is an equipotential 
surface without any hole or pocket of alien matter inside. 

If we write u/p = A  and a / p  = B, equation (2.6) may be written as 

Ae-“r$’+BS’= -1.  (2.12) 

Combining (2.11) and (2.12), it is not difficult to get 

e-q~’=[-A*B(A2+B2-1)”2]/(A2+B2), 
S ’  = [ - B  * A ( A 2 + B 2 -  1)’”]/(A2+B2), 

and also 
(0 2 - l )a2+(QV-p)2=0 ,  

(2.13) 

(2.14) 

(2.15) 

where we have written e-‘4’ = -Q. It is interesting to note that the relation (2.15) 
is exactly identical to the relation (44) of Teixeira eta1 obtained for spherical symmetry 
and y = -1 .  

For real values of e.-‘‘4’ and S’ one must have (A2 + B 2 )  3 1, which in other words 
means 

(T2 +a 3 p 2 .  

* A (A + B - 1) = B 

( A ~ + B ~ ) ( A ~ - ~ ) = o .  

It is interesting to note that in the absence of the scalar field ( S ’  = 0) we get 

which can be written also after squaring as 

This leads us to A’ = 1 or p2  = u2 (De and Raychaudhuri 1968). On the other hand, 
in the absence of the electric field (4’ = 0) 

* B ( A ~ + B ~ - I ) ~ / ~ = A ,  

whichleadsusto(A2+B2)(B2-1)=0. ThisgivesB2= 1 o r p 2 = a 2  (Wolke ta l  1975). 
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We now proceed to show that in the interior of the singularity-free static dust 
charged electrically as well as in the scalar sense, h,k in (2.3) must be Euclidean. The 
proof is as follows. 

The spatial components of field equations can be written for the line element (2.3) 
as 

112 k m  
Rij =Hi, f277,Lq.j -h-'I2hcj(h h q , k ) , m  

= -(h,,h km4,kd,m - 24,,4,1)e-2" - 4 1 r p e - ~ " h , ,  + 2S,,S,1 (2.16) 

for the repulsive type of scalar field, where HI, is the Ricci tensor built up from hlJ.  
Again the field equation (2.8) leads to 

(2.17) - h - ' / 2 h , , ( h  h q , k ) , , , ,  = -41rp e-'"hIJ -e -2"h, ,h 'k4 , ,d ,k .  1/2  km 

Substituting (2.17) in (2.16), 

H~~ = 2 ( e - - 2 " ~ , i ~ , , - q f 7 , i q , j + ~ , i ~ , j ) .  

Since 4 and S are functions of q 

(2.18) 

H,, = 2 ( e - 2 q 4 f 2 + ~ ' 2 -  Ijq,,q,J. (2.19) 

In view of (2.11) one concludes 

= 0,  (2.20) 

(2.21) 

which means that the three-space is flat and the line element can be written as 

ds2 = e2' dt2 - e - 2 n  (dx2 + dy2 + dz '), 

Again from (2.17), in view of the line element (2.21), 

(2.22) 

In fact, the whole set of field equations now reduces to a single equation (2.22). 
Replacing d,k in terms of 7 . k  and s,k using (2.11), we get 

(2.23) 

In the absence of the electric field (S'j2= (dS/dq)2 = 1 and finally (2.23) reduces to 
S,kk = * h p  exp (T2S),  which is exactly identical to that obtained by Das (1962) 

for dust coupled with a scalar field. On the other hand, if the scalar field does not 
exist we have S,k = 0 and from (2.23) 

3 c (e-"),kk -41rpe-3", 
k = l  

which is again identical to the relation (28) of De and Raychaudhuri (1968) for 
electrically charged dust. 

3. Coupled electric and scalar field in empty space 

Here we coiisider only those situations where both goo and the electrostatic potential 
C#J are functions of the scalar field. We need these two assumptions separately in the 
exterior, while in the interior we showed previously that the functional relationship 
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between any two of the above variables results in the functional relationship with the 
third also. The field equation (2.9) in this case (p = 0) gives us 

d2q/dS2 =e-'" (dq5/dS)2. (3.1) 

Maxwell's equation (2.4) in charge-free space (a = 0 )  gives 

( g i k J - g  S,iS,k) - d ( e  -2"- dS) d 4  = 0,  
dS 

which reduces to 

e-4" (d4/dS)2 = D', 

(3.2) 

(3.3) 

where D is an integration constant. Combining (3.1) and (3.3), it is not difficult to get 

(dq/dS)2 = D2e2" -E ,  (3.4) 

which can be easily integrated to determine explicitly the relationship between q and 
S.  Combining (3.3) and (3.4), one gets in the exterior 

(3.5) e-2" (d4/dS)2 - (dq/dS)2 =E,  

whereas in the interior E = -1 in view of (2.11). 
The relation (3.5) can be written also in the form 

e-2" (dq5/dq)'- 1 = E (dS/dq)2, 

which again on replacing (dS/dq) from (3.4) reduces to 

(d4/dq)'=e2"[l +E/(D'e'" -E ) ] .  (3.6) 
On integrating (3.6) one can get 

e'" =(4 + F ) ~ + E / D ~ ,  (3.7) 

where F is another constant. In the special case when E = 0 one obtains goo in the 
whole square form, that is 

goo = (4 +m2. (3.8) 
(3.8) is exactly the case given by Tiwari (1979). 

The spatial components of the field equations are now 

The equation (3.9) can also be written, in view of (2.5) with CY = 0 in empty space, as 
2 

Hij + 2 [ (g) - 1 - (g) e-'n]S,iS,j 

= hijh k m S , k S , m  -- d'rl hijh " S , k S , m ( S )  d 4  e-'". 
dS ' 

Since (dq/dS)2 = e-'" (d4/dS)*, from (3.1) we finally obtain 

Hij + 2 [ ( d ~ / d S ) ~  - 1 - (d4/dS)' e-2"]S,iS,j = 0, 

(3.10) 

(3.11) 
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which can be written in view of (3.5) as 

Hij -2(1 +E)S,,S,j = 0. (3.12) 

So if one has E = -1 in the empty space also, one gets Hi, = 0 which means that the 
three-dimensional space section is Euclidean, and in that case the whole set of field 
equations reduces to a single equation 

(3.13) 

Case I. In (3.12) if E = 0, one has 

Haj - 2s.is.j = 0. (3.14) 

This is essentially the same relation as was obtained by Tiwari (1979) except for the 
minus sign on the left-hand side. In Tiwari's case there was a plus sign, because he 
considered an attractive scalar field. The equation (3.14) represents the vacuum field 
equation in the absence of any electric or scalar field for the line element 

(3.15) 

So once the solution for S is known in (3.15), it is possible to generate a vacuum 
solution in the presence of scalar and electric fields by integrating (3.4) for 7) when 
E = 0. This was actually what Tiwari had done. 

Case 11. For E = -1 one can find the solution for e' from (3.13), utilising the relation 
between 7 and S from (3.4). Once 77 is known, the metric is also known in this case 
because the line element is exactly identical to (2.21) valid for the interior. S and 4 
can then be determined from (3.4) and (3.6). Such a solution can perhaps match with 
those in the interior because the relation (3.5) in the exterior is exactly identical to 
(2.11) in the interior when the constant E = -1. 

2s 2 -2s ds2 = e dt -e hij dx' dx'. 

4. Some special spherically symmetric solutions 

4.1. Dust with electric as well as scalar charge 

The line element in (2.21) can be written in spherically symmetric form as 

ds2 = e2', dt2 -e-=" (dr2+r2  de2  + r2 sin2 6' dq2),  

- R 2  - 0 
2 - -R 3 = R o = - ( r ~ , ~ ~  +2r1,~lr)e*" = -4?l -4np, 

R ' I  = (77.11-277~ + 2 7 7 , 1 l r ) e ~ ~  = -4:1 +2yS:1e2" +47rp. 

(4.1) 
where 7 is a function of the radial coordinate alone. The field equations are 

(4.2) 

(4.3) 
2 

Here y = *1 according to whether the scalar field is of repulsive or attractive type. 
The Maxwell and scalar equations are 

2 -2rl 2 -377 (r e 

(r2S,1),1 = 4nycur e 

4,1),1 = -4nur e 
and 

and the contracted Bianchi identity is 

2 -277 

(4.4) 

(4.5) 
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We see that there are four equations (4.2)-(4.5) and six unknown quantities such as 
77, p, 4, S, a and a. So one has the freedom to make two assumptions to get the 
exact solutions. The simple assumptions are perhaps 

A = u / p  = constant and B = a l p  = constant. 

From (4.2) and (4.3) it is easy to obtain a relation like 
2 -2r) 2 

t),l = e  4,1 - y G .  

From (4.6) and (4.7) 

(4.7) 

e-'+,l= w , 1 ,  (4.8) 

SJ = nq,1, (4.9) 

where m is a constant because A and B are constants. Similarly 

where n is another constant given by a different combination of A and B and y. Now 
by applying the fact that a /a  = A / B  = K say, K being a constant, we get from (4.4) 
and (4.5) the solution for 7 as 

e-MT = (L/r + N I .  (4.10) 

In (4.10) L and N are constants and M is another constant given by M = m / ( m  + n K )  
or in other words M is completely determined if A and B are known. The solution 
(4.10) is simple but unfortunately singular at r = 0. 

4.2. Dust with scalar charge alone 

In this context we remember an exact solution given for the interior of a spherically 
symmetric, conformally flat and electric charged dust by Banerjee and Som (1981). 
The solution was matched with the exterior Reissner-Nordstrom metric also. In this 
case we make the same assumption that the metric is conformally flat, and this 
assumption leads us to the exact solutions of the field equations because in the absence 
of the electric field we have now three equations and four unknowns (cf 9 4.1.). 

If we assume that the metric is conformally flat, that is the Weyl tensor CFyap = 0, 
we get the line element (2.21) in the form 

ds2 = (a r2+ 6 )  dt2- (a?+ b)-' (dr2+r2  d8'+r2 sin2 8 dq'), (4.11) 

where a and b are two constants. 
One should, however, remember that for the static equilibrium of scalarly charged 

dust the scalar field must be of repulsive character i.e. y = -1. The mass and scalar 
charge density in this case are equal and are given by 

(4.12) 

In order that at r = 0, the mass density is positive, one must have a > O .  Now one 
can match the solution (4.11) with the exterior metric given by Yilmaz (1958) for the 
one-parameter repulsive force, which is 

47rp = 4 m  = (a2r2 + 3a6) / (ar2  + 6 ) .  

ds2 = e-2'/' dt2-e2C/' (d r2+r2de2+r2s in2  8 dq'). 

For matching one needs at r = ro 

k0o) in te r ior  = (goo)exterior, 
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which gives 
2 aro + b = e -2c/ro. 

The continuity of the derivative of goo at r = ro further gives 

- (2c/r~)eZC/'o = 2aro. 

Combining (4.13) and (4.14), one finally has a and b as 

a = (c/r30)e-2c/r0, b = e-2c/ro (1 -c/ro), 

(4.13) 

(4.14) 

It has already been shown that a > 0, which leads us to the conclusion that c > 0. 
Since the condition of conformal flatness only is sufficient to reduce the line element 
(2.21) to (4.11), it may be concluded that this metric represents the most general 
conformally flat solution for the interior of a static scalarly charged dust in equilibrium 
in an exactly analogous manner for the electrically charged dust case (Banerjee and 
Som 1981). 
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